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Abstract
A map of a quantum Heisenberg spin chain into an extended Bose–Hubbard-like Hamiltonian is
set up. Within this framework, the spectrum of the corresponding Bose–Hubbard chain, on a
periodic one-dimensional lattice containing two, four, and six bosons shows interesting detailed
band structures. These fine structures are studied using numerical diagonalization, and
nondegenerate and degenerate perturbation theory. We also focus our attention on the effect of
the anisotropy and Heisenberg exchange energy on the detailed band structures. The signature
of the quantum breather is also set up by the square of the amplitudes of the corresponding
eigenvectors in real space.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The phenomenon of localization and transport of energy in
discrete lattices by discrete breathers has received considerable
attention in recent years both from the theoretical and
experimental points of view [1–3]. These excitations are
generic time-periodic and spatially localized solutions of the
underlying classical Hamiltonian lattice with translational
invariance. Their spatial profiles localize exponentially for
short-range interactions. Recently, the application of these
ideas to the normal mode space has allowed us to explain
some facets of the Fermi–Pasta–Ulam (FPU) paradox [4–8].
The problem consists of the nonequipartition of energy among
normal modes of a weakly anharmonic atomic model. In the
harmonic limit, each normal mode corresponds to a periodic
orbit in phase space and is characterized by its wavenumber q .
Such an investigation of localized excitations in normal mode
space from the harmonic limit into the FPU parameter regime

5 Author to whom any correspondence should be addressed.

allows us to realize the persistence of periodic orbits, termed q-
breathers. In the normal mode space, although the interaction
is long ranged, it is selective and purely nonlinear, thus q-
breathers localize exponentially for classical investigations.

Before using quantum breathers, it is important to specify
the correct correspondence relation between a classical model
and its quantum mechanical counterpart [9]. Quantum
breathers consist of superpositions of nearly degenerate many-
quanta bound states, with very long times to tunnel from one
lattice site to another [10]. These quantum excitations although
being extended states in a translationally invariant system are
characterized by exponentially localized weight functions, in
full analogy to their classical counterparts.

Studies of quantum modes on small lattice are of interest
for quantum devices based on quantum dots, for studies of
photonic crystals, Josephson junction arrays [11], arrays of
weakly coupled waveguides, protein-like crystals [12], and
possibly in myoglobin [13], for the studies of Bose–Einstein
condensates in periodic optical traps [14], light propagation
in interacting optical waveguides, and cantilever vibrations
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in micromechanical arrays. It has also been shown that the
intrinsic localized modes can occur in isotropic ferromagnetic
chains [15]. In many cases, quantum dynamics is important.

It is worth mentioning that recent experimental inves-
tigations show that we can observe quantum breathers in
coupled Josephson junctions. In this specific system, Pinto
and Flach [16] found that the presence of the anharmonicity in
the potential of two capacitively coupled Josephson junctions
allows localization of quantum excitations that henceforth
localize energy on one junction during a time that sensitively
depends on their energy. They can be tuned through the bias
current injected into the junctions’ manipulation techniques
that nowadays are used for quantum information processing
with Josephson junctions. Such a system can be used to resolve
the flow of energy between the junctions in time.

Discrete breathers are nonlinear localized modes that
can be created in translationally invariant nonlinear lattice
models. They can modify the system’s properties such as the
thermodynamics of the lattice and introduce the possibility of
nondispersive energy during its transport. Investigations of
discrete breathers or intrinsic localized modes in recent years
has revealed a wealth of new properties of energy localization.
Relaxation and mobility, in particular, may have critical links
with biomolecular processes [17]. The study of the spectrum
and eigenstates of the quantum breathers is less known for
the case of systems containing more than two bosons. Indeed
there are several published papers for the case of two bosons.
For instance, Nguenang et al [18] investigated the localization
properties of the eigenstates in a finite Bose–Hubbard chain
and they observed localization of the weight function as a
function of the wavenumber, which they interpret as a signature
of quantum q-breather excitations displaying an algebraic
decay, at variance with the exponential decay of the q-breathers
in the case of a classical nonlinear system [18]. Two-vibron
bound states have been investigated in the β-Fermi–Pasta–
Ulam model [19] as well as in [9, 20–29]. The most extensively
studied system is the discrete nonlinear Schrödinger equation
with two particles (a dimer). This system is integrable due to
the existence of two integrals of motion (energy and boson
number). The classical version can be completely solved.
Bernstein et al [31, 32] and Aubry et al [32] studied the
expected splitting of degenerate pairs of eigenvalues in the
quantum system. In practice, less is known for systems with
many degrees of freedom. It is only Dorignac et al [8, 23] and
Eilbeck [33] who have studied the spectrum of the quantum
discrete nonlinear Schrödinger equation, in the case of four
and six bosons using degenerate perturbation theory. The
output suggested exponentially small band widths for quantum
breather bands with large boson number [9, 30, 34]. However,
in the case of a Heisenberg spin system very few studies
have been mostly devoted to classical discrete breathers within
the modulational instability framework [15, 35]. From the
foregoing it is clear that the study of the localization of energy
in a quantum Heisenberg spin chain is less investigated and
needs a detailed inspection.

In this paper, we investigate the spectrum of an extended
Bose–Hubbard-like lattice derived from a specific map of a
one-dimensional (1D) Heisenberg spin system. One important

point about the localization is the question of knowing how
localized the excitations in such a physical are. The first step
to answer such a question is to probe the energy band of
the system under consideration. From such an investigation,
important an new features can be determined. Using a
numerical diagonalization of the so-derived Hamiltonian,
nondegenerate and degenerate perturbation theory, we study
the spectrum of the two, four, and six bosons for the quantum
Heisenberg spin chain within the mapping scheme. In
section 2, we describe the model. In section 3, we introduce
the basis used to write down the Hamiltonian matrix then we
derive the analytical expression of the eigenvalue spectrum.
In section 4, we study the influence of exchange interaction
and anisotropy interaction on the eigenvalue spectrum in a
periodic lattice containing two bosons. In section 5, we
present the numerical results by using the diagonalization of
the Hamiltonian matrix to derive the energy spectrum for four
and six bosons. In section 6, we conclude our study.

2. Model Hamiltonian and the mapping

We use a model for the classical Heisenberg ferromagnetic spin
chain.

H1 = −
∑

i

J �Si · �Si+1. (1)

Here, �Si = (Sx
i , Sy

i , Sz
i ) is the spin angular momentum vector,

J is the exchange interaction parameter. We introduce the
classical quantity Sc = h̄S and a condition which allows the
transformation of equation (1) into a quantum spin system. We

also introduce a dimensionless spin variable Ŝi = �Si
h̄ and define

Ŝ±
i = Ŝx

i ± iŜ y
i . We recast the Hamiltonian into the following

dimensionless form

Ĥ1 = −
∑

i

J

2
[Ŝ+

i Ŝ−
i+1 + Ŝ−

i Ŝ+
i+1 + 2Ŝz

i Ŝz
i+1]. (2)

It is impossible to diagonalize the Hamiltonian (2) by a
canonical transformation, but it is possible to transform it to
the new dimensionless one, using either pure Bose or pure
Fermi operators [36, 37]. Ŝi satisfies the commutation relations
[Ŝ+

i , Ŝ−
j ] = 2Ŝz

i δi j , [Ŝ±
i , Ŝz

j ] = ±Ŝ±
i δi j , with Ŝi · Ŝi =

S(S+1). In this respect, the Hamiltonian maintains a relatively
simple form. To this end, we use the Holstein–Primakoff
transformation [38] for the local spin operators to treat the
system from the semi-classical approach as compared to the
quantum version in terms of bosonic creation and annihilation
operators as

Ŝ+
i = √

2[1 − ε2a†
i ai ]1/2

εai

Ŝ−
i = √

2εa†
i [1 − ε2a†

i ai ]1/2

Ŝz
i = [1 − ε2a†

i ai ],
(3)

where ε = 1√
S

. Using equations (3), a quantum Hamiltonian
can be obtained in a power series of ε, which is rescaled by
Jε2 as a sum of

Ĥ10 = −
f∑

i

[a†
i ai+1 + ai a

†
i+1 − (a†

i ai + a†
i+1ai+1)] (4)

2
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and

Ĥ11 = 1
4

f∑

i

[a†
i a†

i ai ai+1 + a†
i a†

i+1ai+1ai+1 + a†
i ai ai a

†
i+1

+ ai a
†
i+1a†

i+1ai+1 + 2a†
i ai a

†
i+1ai+1] (5)

f is the number of sites in a 1D periodic lattice, a†
i and ai being

the bosonic creation and annihilation operators respectively,
satisfying the usual commutation relations [ai , a†

j ] = δi j ,

[a†
i , a†

j ] = 0 and [ai , a j ] = 0. In this way, the total
Hamiltonian of the system can be written as the sum of two
terms.

Ĥ1 = Ĥ10 + γ Ĥ11 (6)

where γ = ε2 is the parameter controlling the strength of the
interaction.

3. Energy spectrum for the two-boson state in the
model

To describe the components of the quantum states, we use a
position state representation |ψi〉 = |n1, n2, . . . , n f 〉, where
ni represents the number of bosons at site i (n = ∑

i ni ).
For example, the state |11000 · · · 0〉 represents a state with
one boson at the site 1, another boson at site 2, and nothing
elsewhere.

Considering the fact that the chain of length f is subject
to periodic boundary conditions, we can apply the translation
operator to these states. The chain is translationally invariant
and the Hamiltonian of this quantum system commutes with
the number operator N̂ = ∑ f

i=1 a†
i ai , whose eigenvalue is

n. For a given number of bosons, each eigenstate is a linear
combination of the number state with fixed n. In addition to the
number of quanta n, there are n − 1 further quantum numbers
which define the relative distance between the bosons.

For the sake of simplicity, we consider an odd number of
sites f = 2σ + 1, where σ can take f +1

2 different values. A
general eigenfunction of these states for the Hamiltonian (6)
is a Bloch wave that can be written as (see the notation
in [1, 8, 9, 18, 20])

|ψ〉 =
σ∑

i=1

Ci |ψi 〉. (7)

We can construct the number states that are also Bloch states
as

|ψi 〉 = 1√
f

f∑

s=1

(
T̂

τ

)s−1∣∣∣1 0 · · · 0︸ ︷︷ ︸
i−1

1
〉
. (8)

Here T̂ is the translation operator and k = 2πν/ f , with
ν ∈ {− f +1

2 ,
f −1

2 } and τ = eik being the eigenvalue of the

translational operator T̂ . To ensure that 〈ψ|ψ〉 = 1, it is
necessary that C1,C2, . . . are normalized as

∑( f +1)/2
i=1 |Ci |2 =

1. The lattice under consideration is a homogeneous quantum
lattice with periodic boundary conditions. Therefore it is
possible to block diagonalize the Hamiltonian operator using
eigenfunctions of the translation operator T̂ defined as T̂ a†

i =
a†

i+1T̂ , so that T̂ [n1, n2, . . . , n f ] = [n f , n1, . . . , n f −1]. In

each block, the eigenfunctions have a fixed value of the
momentum k [19]. With the basis introduced in equation (8),
we can derive the matrix elements after introducing the
dimensionless Hamiltonian using H̃kl = 〈ψk |H̃ |ψl〉. We
obtain the Hamiltonian matrix in the following equation

H̃1 = Ĥ1

J
= −

⎛

⎜⎜⎜⎜⎜⎜⎝

u
√

2q · · ·√
2q∗ y g

g∗ u g
...

. . .
. . .

. . .

g∗ u g
g∗ P

⎞

⎟⎟⎟⎟⎟⎟⎠
, (9)

where P = τ− f +1
2 + τ− f −1

2 + u, u = −4, y = u + γ /2, q =
(
γ

4 − 1)g, and g = 1 + τ .
The structure of the Hamiltonian matrix obtained in

equation (9) is similar to the two-bosons case described
in [10, 16–21, 24, 33] and the four-bosons case described
in [8]. We can derive the eigenenergies for each given
Bloch wavenumber k from the Schrödinger equation given by
Ĥ |ψk〉 = E |ψk〉.

Using numerical diagonalization as in [20, 36, 37], we
can derive the eigenvalue spectrum of the corresponding
Heisenberg spin chain. We have plotted numerically the energy
spectrum as a function of wavenumber k for the interaction
strength γ = 1.

This is shown in figure 1(a), where the result are obtained
from the numerical diagonalization of the Hamiltonian
matrix (9). Here, it is clear that an isolated ground-state
eigenvalue appears for each k that corresponds to a bound
state [18, 20, 22]. For this isolated ground state, there is a
high probability of finding two quanta on the same site. Similar
phenomena have been obtained in other nonlinear models in [8]
for the case of four particles and in [18–20, 22, 25–28, 40–42]
for two particles. Figure 1 clearly shows the energy spectrum
composed essentially of a localized band below the delocalized
band.

We have shown in figure 1(b) the square wave amplitudes
of the corresponding eigenvectors in real space for a localized
state. From a physical picture of a ferromagnetic spin chain,
the continuum band here is describing a magnetic spin chain
with completely delocalized excitation along the chain whereas
the case of a single band for two on-site bosons corresponds
to the case of only one spin that can be excited by two
switches. Figure 1(b) shows that the wavefunction is localized
and indicates that there is a high probability of finding two
bosons on the same sites.

4. Effect of the exchange and anisotropy interaction
on the two-boson state energy’s spectrum

We describe the novel Hamiltonian for an anisotropic ferro-
magnetic chain. The corresponding Heisenberg Hamiltonian
can be written as

H2 = H1 +
∑

i

A(Sz
i )

2. (10)

The term proportional to A represents the single-ion uniaxial
anisotropy due to crystal field effect and A is the anisotropy

3
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Figure 1. (a) Energy spectrum of the two bosons in the extended Bose–Hubbard chain; (b) square wave amplitudes of the eigenvectors in real
space. Here the value of the interaction strength γ = 1, n = 2, and f = 37.

parameter. If the anisotropy parameter A < 0, the system is
associated with an easy axis spin chain and if A > 0, the spin
system is said to have an easy plane anisotropy for the spin
chain. We can derive the discrete quantum Hamiltonian using
Holstein–Primakoff bosonic representation, then equation (10)
can be written after introducing dimensionless Hamiltonian

Ĥ2 = Ĥ20 + γ Ĥ21 + O(γ 2). (11)

Hence we set

Ĥ20 = Ĥ10 + 2
A

J

f∑

i

a†
i ai (12)

and

Ĥ21 = Ĥ11 − 4
A

J

f∑

i

a†
i ai a

†
i ai . (13)

We also use the basis introduced in equation (8) to calculate
the matrix elements for a dimensionless Hamiltonian. In this
way the Hamiltonian matrix can be written as

H̃ = Ĥ

J
= −

⎛

⎜⎜⎜⎜⎜⎜⎝

t
√

2q · · ·√
2q∗ t + γ /2 g

g∗ t g
...

. . .
. . .

. . .

g∗ t g
g∗ P

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(14)
where P = τ− f +1

2 + τ− f −1
2 + t , q = (

γ

4 − 1)g, t =
−4[1 + A

J (1 − γ )], g = 1 + τ .
The structure of the Hamiltonian matrix obtained in

equation (14) is similar to two-vibron bound states in the β-
Fermi–Pasta–Ulam model described in [19].

Now let us use a numerical diagonalization to derived the
eigenvalue spectrum for the anisotropic ferromagnetic chain
and probe the influence of the exchange interaction on the
energy spectrum.

In this respect we introduce as an example the following
set of parameters of the CsNiF3 material which is a best
example of 1D spin system, namely J = 23.6 and

A = 9. For this case, the energy spectrum is composed also
by the continuum band above the single band, as illustrated in
figures 2(a) and (b).

Modifying the parameters of the CsNiF3 material is also
supported by the idea that such a material may also face some
physical constraints such as heating or magnetostriction effects
that can lead to the modification of its physical parameters. For
the ferromagnetic materials’ case, characterized by J = 23.6
and A > 9, the energy spectrum for these materials is always
composed of the continuum band above the single band. Here
we notice that, with increasing the anisotropy parameter of
the material the single band progressively merges into the
continuum band and the complete merging of the single band
into the continuum occurs for the anisotropy parameter A =
48. This is clearly shown in figure 2(c). It is also realized that
keeping this value of the exchange integral parameter in the
range J = 23.6 and then increasing the anisotropy parameter
to A = 70, the single band can appear above the continuum, as
seen in figure 2(d).

From these later figures, we notice that when the exchange
interaction is constant, increasing the anisotropy parameter
contributes to modifying the localized states.

In the case of ferromagnetic materials with J = 23.6 and
A < 9, the continuum band does not merge the single band, the
width of the gap progressively increases when the anisotropy
parameter’s value decreases. However, for A � 0.01 the width
of the gap becomes constant.

We also noticed that for ferromagnetic materials where
J > 23.6 and A > 9, their energy spectrum is comparable to
the case of a ferromagnet with J = 23.6 and A < 9, displaying
a gap with constant width.

Needless to mention is the fact that, for the ferromagnetic
materials with J < 23.6 and A = 9, it is realized that as
the exchange integral parameter is decreasing, the gap between
the continuum and the single band reduces so that a complete
merging of the single band into the continuum band occurs
for J = 4 and A = 9, such as the case seen in figure 2(c).
When the exchange integral J < 4, it is realized that the single
band changes its concavity initially below and takes a reverse
concavity above the continuum. The continuum band leaves

4



J. Phys.: Condens. Matter 22 (2010) 205502 Z I Djoufack et al

Figure 2. Energy spectrum of the two bosons in the extended Bose–Hubbard chain for different values of exchange interaction and anisotropy
parameter where the value of the interaction strength is γ = 1, n = 2, and f = 37: (a) J = 23.6 and A = 9, (b) J = 23.6 and A = 36,
(c) J = 23.6 and A = 48, (d) J = 23.6 and A = 70.

the single band and the width of the gap becomes larger when
J decreases. This phenomenon is depicted in figures 3(a)–(c).

Here we also notice that the width of the gap progressively
increases as the exchange integral J decreases. On varying
the values of the exchange interaction parameter, some little
difference in the spectrum occurs just as a matter of ordering
the position of the bands in the energy spectrum.

To probe the existence probability of a given localized
state for the corresponding ferromagnetic chain, we also
plotted the square of the eigenvectors in real space for different
values of anisotropy and exchange interaction. As a result
we obtained the same figures as those plotted previously
in figure 1(b), from a physical picture applied to magnetic
material in the framework of a spin system it is important to
mention the fact that there is a limitation i.e. n � 2S. In the
case of CsNiF3 material S = 1 and since the localized states
occur for n = 2 the bound states occurring in figures 1 and 2
are the result of a localized states constituted of two adjacent
spins engaged in a switching process. This process is revealing
an intrinsic local magnetization process that occurs in such a
ferromagnet.

5. Energy spectrum for the four or six bosons in the
extended Bose–Hubbard chain

In this section we consider the same Hamiltonian given in
equation (10) with rescaling at ε2. Before using degenerated
perturbation theory, it is important to know that all bosons on
the same band might have the same energy. The Hamiltonian

of equation (10) shows that all bosons on the same band have
different energy at zero anisotropy coupling (A = 0). In
order to discourage many bosons from occupying the same site,
we can derived a Bose–Hubbard-like lattice from a specific
anisotropic term by using the usual commutation relations
of the bosonic operators. For this we start by defining the
perturbed Hamiltonian as Ĥ = Ĥ0 + V̂ , where Ĥ0 is the
nonlinear on-site interaction Hamiltonian given by

Ĥ0 =
f∑

i

Aγ a†
i a†

i ai ai . (15)

If A < 0, the model is also known to describe an attractive
interaction or a repulsive one if A > 0. All the other terms of
the Hamiltonian describe the nonlinear interaction within the
particles located in adjacent sites, including the hopping term
and linear on-site interaction terms. This is denoted by V̂ .

V̂ = −
f∑

i

(
J [a†

i ai+1 + ai a
†
i+1 − (a†

i ai + a†
i+1ai+1)]

+ A(a†
i ai)+ γ

4
J [(a†

i a†
i ai ai+1 + a†

i a†
i+1ai+1ai+1)

+ (a†
i ai ai a

†
i+1 + ai a

†
i+1a†

i+1ai+1)+ 2a†
i ai a

†
i+1ai+1]

)
.

(16)

To describe the components of the quantum states, we use a
position state basis representation as in section 3. For instance,
the state |ψi 〉 = |2000110〉 represents a state with two bosons

5
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Figure 3. Energy spectrum of the two bosons in the extended Bose–Hubbard chain for different values of exchange integral parameter where
the value of the interaction strength is γ = 1, n = 2, and f = 37: (a) J = 9 and A = 9, (b) J = 2 and A = 9, (c) J = 2 and A = 9,
(d) J = 0.5 and A = 9.

at site 1, one boson at site 5, one boson at site 6 and no bosons
elsewhere. In view of the periodic structure of the lattice,
the chain is translationally invariant and the Hamiltonian of
this quantum system commutes with the number operator
N̂ = ∑ f

i=1 a†
i ai , whose eigenvalue is denoted by n. We

can generate an equivalence class of states by applying the
translation operator with periodic boundary conditions to one
of these states. We can manage to order these classes. For
example, the set of all classes containing |22〉, |202〉, |2002〉,
and so on, is referred to as the {2, 2} band. All classes
containing |42〉, |402〉, |4002〉, . . . are referred to as the {4, 2}
band. All the classes containing |24〉, |204〉, |2004〉, . . . are
referred to as the {2, 4} band and all the classes containing
|33〉, |303〉, |3003〉, . . . are referred to as {3, 3} bands.

Bands involving the interaction of single bosons with com-
posite states, such as {2, 1, 1}, {3, 1}, {4, 1, 1}, {3, 1, 1, 1}, {5,
1}, {1, 1, 2}, {1, 3}, {1, 1, 4}, {1, 1, 1, 3}, {1, 5}, . . ., are more
difficult to analyze and do not reveal interesting structures.
Hence, we do not consider these bands in the present study
provided that the main information is not lost. This section
is devoted to the fine structure of the {2, 2}, {4, 2}, {2, 4}, and
{3, 3} bands.

If the anisotropy is considered without the Hamiltonian
term denoted by V̂ , the states |22〉, |202〉, |2002〉, . . ., of all
previously mentioned bands are degenerate. Therefore, we
use degenerated perturbation theory to obtain both eigenvalues
and eigenvectors for the case of the perturbed Hamiltonian.
For a given number of bosons, each eigenstate is a linear
combination of the number of states with fixed n. In addition

to the number of quanta n, there are n − 1 further relative
distances i − 1 between the four and six quanta. We consider
an odd number of sites f = 2σ + 1, which can take ( f + 1)/2
different values for the sake of simplicity. We do proceed
in the same way as in section 3, then the Bloch waves of
{2, 2}, {4, 2}, {2, 4}, and {3, 3} states can be written in the
notation of [18, 20, 37] as

|ψ〉 =
σ∑

j=1

Ci |ψi 〉, σ = f − 1

2
. (17)

We can construct number states with Bloch waves as

|ψi 〉 = 1√
f

f∑

s=1

(
T̂

τ

)s−1∣∣∣2 0 · · · 0︸ ︷︷ ︸
i−1

2
〉

|ψi 〉 = 1√
f

f∑

s=1

(
T̂

τ

)s−1∣∣∣4 0 · · · 0︸ ︷︷ ︸
i−1

2
〉

|ψi 〉 = 1√
f

f∑

s=1

(
T̂

τ

)s−1∣∣∣2 0 · · · 0︸ ︷︷ ︸
i−1

4
〉

|ψi 〉 = 1√
f

f∑

s=1

(
T̂

τ

)s−1∣∣∣3 0 · · · 0︸ ︷︷ ︸
i−1

3
〉
.

(18)

Here T̂ is the translation operator and τ = eik , with k = 2πν/ f
and ν ∈ {−σ, . . . , σ }. Using standard Brillouin–Wigner

6
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Figure 4. (a) Detail of the energy spectrum for the Bose–Hubbard model derived from the anisotropic Heisenberg model in a periodic lattice
where n = 4, f = 37, J = 22, and γ = 0.25: (a) repulsive for A = 7; (b) square of the wavefunction amplitudes corresponding to the
eigenvectors as a function of the position of the band along the chain.

perturbation to the second order approximation, we define the
Hamiltonian matrix element as (in the notation of [7])

H (m,l)
i,i ′ =

∑

ψ̃

〈ψi |V |ψ̃〉〈ψ̃ |V |ψi ′ 〉
E (0) − Ẽ (0)

(19)

where |ψ̃〉 is any state not in the {2, 2}, {4, 2}, {2, 4}, and {3, 3}
subspace; Ẽ (0) is the corresponding energy of |ψ̃〉 while E (0) is
the energy of (m, l) bosons on the same site at zero coupling.
The expression of this energy is given as

E (0)
l = Aγ l(l − 1). (20)

We can use equation (20) to evaluate the energy of l bosons
on the same site. For instance, in the case of n = 4, the {4}
band has energy E (0)

4 = 12Aγ , the {3, 1} band has energy
E (0)

3 = 6Aγ , the {2, 1, 1} band has energy E (0)
2 = 2Aγ , the

{2, 2} band has energy 2E (0)
2 = 4Aγ , and so on.

Considering the lattice with four bosons (n = 4). We
can subdivide this case into several bands. The lowest band
is a linear combination of states with four bosons on a given
site i and no bosons elsewhere. The next lowest band is
composed of states with three bosons on site and another boson
elsewhere. The third band consists of states with two bosons
on one site and two bosons on a separate site. Bands involving
the interactions of single bosons with composite states, such
as {3, 1}, {1, 3}, {1, 1, 2}, and {1, 1, 2} are not considered here
because they are more difficult to analyze. We consider here
only the {2, 2} band because it presents great interest since it
represents the simplest case of a band describing two particles
interacting with each other. Using the previous formulation
given by equations (19) and (20), we obtain the {2, 2} band
Hamiltonian matrix as

H (2,2) = −4J 2 B

Aγ
Iσ − J 2 B

Aγ

⎛

⎜⎜⎜⎜⎝

� W
W ∗ 0 W

. . .
. . .

. . .

W ∗ 0 W
W ∗ P

⎞

⎟⎟⎟⎟⎠
,

(21)

where B = (
γ

4 − 1)2, Iσ is the σ × σ unity matrix, W =
1 + τ = 2eik/2 cos (k/2), P = 2 cos (σk), � = 6(C

B − 1),
C = (

3γ
4 − 1)2, and A is always the anisotropy parameter.

The structure of the matrix in equation (21) is very similar
to the four-boson case described in [8] and the two-boson case
described in [1, 18, 20]. Exact results can be obtained in the
limit when the number of sites tends to infinity. In the limit
f → ∞,

E(k) = −3

2

J 2 B

Aγ
− J 2 B

Aγ

(
4 + � + 4 cos2 (k/2)

�

)

if |�| > 2 cos (k/2). (22)

Using the same technique we have plotted the energy spectrum
of a given material whose parameters are close to those of the
CsNiF3 structure with few bosons but with a different value of
γ according to the limitation given by n � 2S.

The energy spectrum of the Hamiltonian matrix (21)
is obtained by a numerical diagonalization method. The
sign of the anisotropy parameter here determines whether
the underlying Bose–Hubbard model is repulsive (A > 0),
as shown by figure 4(a), or not. The fine structure of the
ferromagnetic materials in the {2, 2} band is constituted by a
continuum band in addition to an isolated band and represents
the ground state of a system with four bosons. The isolated
band that appears either above or below the continuum is
composed of states consisting of adjacent sites that are each
occupied by two quanta. In the continuum band most of
the sites are separated by one or more vacant sites. The
localized band clearly describes the localization of energy that
corresponds to the breather solution of the classical nonlinear
system. This is the so-called soliton band [39, 40]. The
stars correspond to the energy spectrum obtained from an
exact numerical diagonalization of the matrix (21). For the
case of the breather band, the lines represent its plot from
the analytical equation (22) obtained in the limit when the
number of sites tends to infinity. In the attractive case, the
ground state is a localized state, located on two different
positions along the chain illustrated by figure 4(b). This also
illustrates the fact that there is a high probability of finding
four bosons in two adjacent sites, each containing two bosons.
It also represents the intrinsic localized mode with a complex
character that the chain allows us to appreciate while plotting
the eigenvector as a function of the position of particles.
From a physical picture referred to the spin system, we shall

7
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Figure 5. Detail of the energy spectrum for the extended Bose–Hubbard model, here n = 6, f = 37, and γ = 0.5: (a) case of repulsive
nonlinearity where A = 8 and J = 20, γ = 0.25; (b) case of repulsive nonlinearity where A = 9 and J = 16; (c) case of repulsive
nonlinearity where A = 9; J = 26 and γ = 0.17; (d) square wavefunction amplitudes.

keep in mind that the limitation given by n � 2S allows
only material with sufficiently high spin in order to display
such a localization phenomenon that would lead a localized
magnetization reversal process involving two group of two
spins each.

Next, we consider the case of n = 6 bosons. This case
displays three bands: namely the bands {4, 2}, {2, 4}, and
{3, 3}.

In this case, the first band under consideration is the {4, 2}
band. Then if we proceed as in the case of the {2, 2} band, it
turns out that we obtain a Hamiltonian matrix describing this
{4, 2} band as

H (4,2) = − 2J 2

3Aγ
(3B + 2C)Iσ

− B J 2

Aγ

⎛

⎜⎜⎜⎜⎝

� 1 P∗
1 0 1

. . .
. . .

. . .

1 0 1
P 1 �

⎞

⎟⎟⎟⎟⎠
(23)

where P = 6eik D
B , B = (

γ

4 − 1)2, C = (
3γ
4 − 1)2, D =

(
5γ
4 − 1)2, and � = − 1

3B (3B + 2C − 13D).
The structure of the matrix in equation (23) is also a three

diagonal matrix, which is different from the previous matrix in
the position of their elements and very similar to the case of
the six bosons described in [8]. The energies of this band do
not depend on the crystal momentum k.

To characterize the energy spectrum of this band, we
have also used parameters different from those of the CsNiF3

structure.
The structure of the energy spectrum of these ferro-

magnetic materials is different from the {2, 2} band by
the rectangular form of the continuum band and is always
composed of two bands where the single band can appear
above for repulsive nonlinearity presented in figure 5(b), while
in figure 5(a) the system displays only the continuum band.
We also notice that in the spectrum of figures 5(a) and (b), the
continuum band appears to be very degenerated at the lower
and upper edge. Unlike the case studied by Dorignac and
Eilbeck [8] where they observed a continuum band in addition
to two-breather bands, we do not get such a two-breather band
with the initial parameter used here. However, on varying the
parameters A, J , and γ we can obtain two-breather bands in
addition to a continuum band. This may happen in the singular
case of the CsNiF3 material when it faces some physical
constraints such as heating or magnetostriction that may lead
to changes in its parameters and, in particular, the value of γ ,
as seen in figure 5(c). Henceforth, all ferromagnetic materials
displaying a spin value high enough to fulfil the restriction
n � 2S would present an energy spectrum characterized by a
single and continuum bands with a reduced gap. Their ground
state is less localized. This means that the probability of finding
six particles on two sites, i.e. one site with four particles and
another site with two particles on an adjacent site, is weak, as
shown in figure 5(d).
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Figure 6. Detail of the energy spectrum for the Bose–Hubbard model derived from an anisotropic Heisenberg model in a periodic lattice
where n = 6, f = 37, J = 23, and A = 5 corresponding to the {2, 4} band: (a) case of repulsive nonlinearity where γ = 0.17, (b) case of
repulsive nonlinearity where γ = 0.085.

The second band is the {2, 4} band, we also obtained the
Hamiltonian matrix using the same technique as in the case of
{2, 2} or {4, 2} bands.

H (2,4) = − 2J 2

3Aγ
(3B + 2C)Iσ

− B J 2

Aγ

⎛

⎜⎜⎜⎜⎝

� τ P∗
τ ∗ 0 τ

. . .
. . .

. . .

τ ∗ 0 τ

P τ ∗ �

⎞

⎟⎟⎟⎟⎠
, (24)

where P = 6eik D
B , B = (

γ

4 − 1)2, C = (
3γ
4 − 1)2, D =

(
5γ
4 −1)2, and � = − 1

3B (3B+2C−13D), Iσ is the σ×σ unity
matrix. The structure of the matrix in equation (24) appears
to be the same as the {4, 2} band, the difference between the
previous matrix is very small since it is similar to the two-
quanta case described in [23].

The bands presented in the energy spectrum of these
ferromagnetic materials appear at a first glance to be
composed of flat lines where the single band can appear
above the continuum for a repulsive nonlinearity, as depicted
in figure 6(b) while only the continuum band appears in
figure 6(a). On varying the values of A, J and γ we can obtain
also the {4, 2}-like band with two-breather bands in addition to
a continuum band. However, they are rather more likely than
the {2, 4} band but with a difference that this energy spectrum
is rather more degenerate than the {4, 2} case. The square wave
amplitudes corresponding to the eigenvectors as a function of
the position of the {2, 4} band along the Heisenberg chain are
the same as the {4, 2} band previously presented in figure 5(d).

From a physical picture applied to the spin system, it is
important to mention that there is a limitation, i.e. n � 2S,
while the number of bosons in a pure bosonic system has no
such constraint. However, there exist some materials for which
the spin S is high enough so that from the spin picture the
case of n = 6 can be seen as a process involving two adjacent
spins with one being able to proceed to two switches and the
other to four switches. In the case of the CsNiF3 material, the
process cannot happen or if it happens then the process may
turn out to be more complex and the material should be under
constraint since a spin can only be turned down, no more. In

this framework the physical picture can be described as that of
two groups of four spins and two spins adjacently situated that
can be involved in one switch per group. In any case, this can
be understood as the result of a local magnetization reversal
process that occurs in such a ferromagnet involving only a few
spins.

Using the same method as in the {4, 2} case, the
Hamiltonian matrix of the {3, 3} band is

H (3,3) = −3J 2 B ′

Aγ
(Iσ + M), (25)

where B ′ = (
γ

2 − 1)2, M1,1 = 1
2 − 4 D

B ′ , D = (
5γ
4 − 1)2, and

Mi, j = 0 for any i �= 1 and j �= 1.
The diagonal form of the matrix in equation (25) is similar

to the case of six bosons described in [8]. It is important to
stress that the matrix elements in equation (25) are independent
of the wavevector k. For the sake of simplicity, we have
plotted the energy spectrum of this state as a function of the
wavevector only for a ferromagnetic material characterized
by the parameter close to those of the CsNiF3 structure but
with a different value of γ , as shown in figure 7(a); the
eigenvalue of the corresponding {3, 3} band appears only with
two symmetric single bands.

The lower single band is in fact a result of the
transformation of the continuum band into a single band. From
a physical picture applied to the spin system it is once more
important to re-mention that there is a limitation, i.e. n � 2S,
while the number of bosons in a pure bosonic system has
no such constraint. However, there exist some materials for
which the spin S is high enough so that from the spin picture
the case of n = 6 can be seen as two adjacent spins with
each involving three switches. From our results it is clear
that in the framework of six bosons for the case of other
ferromagnets with spin not high enough the process should be
more complex. In such a context, two groups of (three spins)
a triplet can be engaged in a single switch each per group or
triplet in the same time. Such a process needs experimental
investigation. In any case, this can be understood as the result
of a local magnetization reversal process. All ferromagnetic
materials that display parameters different to those of the
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Figure 7. (a) Detail of the energy spectrum where A = 9.5, n = 6, f = 37, J = 21, and γ = 0.17; (b) square wavefunction amplitudes.

CsNiF3 structure, i.e. spin value fulfilling the condition n � 2S
and the possibility of forming two triplet spins, have the same
energy spectrum characterized by two symmetric single bands
with a larger width of the gap between those single bands.
Figure 7(b) shows that the ground state is mainly constituted
of localized states that are located on two different positions
along the chain.

6. Conclusion

This paper has been devoted to studying the detailed band
structures of quantum breathers derived from a map of a
quantum Heisenberg spin system in a modified Bose–Hubbard-
like Hamiltonian on a periodic 1D lattice containing two, four,
and six bosons. Our results confirm that when the nonlinearity
is significant in the ferromagnetic materials, a single band
for the localized states will split from the continuum band.
Such a result has also been obtained in other nonlinear
models [18–23, 26–28, 33, 39–41] for two particles and [8, 33]
for four particles. From a physical picture of a ferromagnetic
spin chain, the continuum band here is describing a magnetic
spin chain with completely delocalized excitation along the
chain whereas the case of a single band for two on-site bosons
corresponds to the case of a local magnetization reversal
process involving two switching spins. The results obtained
for the case of n = 4 or 6 also show that we have succeeded
from our mapping to describe the energy spectrum of a
spin chain facing a local magnetization reversal process that
reveals the presence of bound states through the appearance of
single bands that are a signature of quantum breathers in the
system. The details of the corresponding square wavefunction
amplitudes of the eigenvectors as a function of the position of
particles along the chain allowed us to appreciate their complex
character characterized by an intrinsic localized mode. Such a
Fermi–Pasta–Ulam behavior can be confirmed by the model
described by the Hamiltonian given in equation (11). The
anisotropy energy has the same role as the exchange integral
energy, that is it can either enlarge the gap between the
continuum and the localized state or order the position of the
bands in the energy spectrum. An important question that may
be raised is what is the localization law in real or normal mode
space for the bound states so described by their energy band

structure? Such an important issue will be addressed in a future
paper.
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